This Specimen has been sold.
3.85" Chondrite Meteorite (77 g) Slice with Shock Veins - Morocco
This is a 3.85" wide (77 gram) stony (chondrite) meteorite with shock veins, collected from a large strewn field in the western Sahara Desert of Morocco. We believe this would probably be classified as a L3 chondrite based on most of the material found in the area. L type ordinary chondrites are the most common and therefore most affordable meteorites; allowing you to own a chunk of "space rock" at a reasonable price. This piece has been cut flat and polished on both sides, revealing the inner metallic inclusions.
It comes with an acrylic display stand.
It comes with an acrylic display stand.
Shock veins commonly occur in meteorites when the asteroid collides with a large object in space, typically another asteroid. If the collision is powerful enough, the pressure and heat will melt portions of the asteroid, resulting in a vein-like pattern that forms during re-solidification.
About Chondrites
Chondrites are stony (non-metallic) meteorites that have not been modified by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies are captured in the planet’s gravity well and pulled to the surface. They are by far the most common type of meteorite, representing about 86 percent of all meteorites that have fallen to Earth.
Prominent among the components present in chondrites are the enigmatic chondrules, millimeter-sized spherical objects that originated as freely floating, molten or partially molten droplets in space; most chondrules are rich in the silicate minerals olivine and pyroxene. Chondrites also contain particles of various metals such as nickel, iron, and aluminum. These formed at the very beginning of the solar system and aggregated over time: they are the oldest rocks known on Earth!
Chondrites are divided into about fifteen distinct groups on the basis of their mineralogy, bulk chemical composition, and oxygen isotope compositions. The various chondrite groups likely originated on separate asteroids or groups of related asteroids. Each chondrite group has a distinctive mixture of chondrules, refractory inclusions, matrix (dust), characteristic chondrule sizes, and other components. Other ways of classifying chondrites include weathering and shock. The L chondrite group is the most common of these.
Chondrites are stony (non-metallic) meteorites that have not been modified by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies are captured in the planet’s gravity well and pulled to the surface. They are by far the most common type of meteorite, representing about 86 percent of all meteorites that have fallen to Earth.
Prominent among the components present in chondrites are the enigmatic chondrules, millimeter-sized spherical objects that originated as freely floating, molten or partially molten droplets in space; most chondrules are rich in the silicate minerals olivine and pyroxene. Chondrites also contain particles of various metals such as nickel, iron, and aluminum. These formed at the very beginning of the solar system and aggregated over time: they are the oldest rocks known on Earth!
Chondrites are divided into about fifteen distinct groups on the basis of their mineralogy, bulk chemical composition, and oxygen isotope compositions. The various chondrite groups likely originated on separate asteroids or groups of related asteroids. Each chondrite group has a distinctive mixture of chondrules, refractory inclusions, matrix (dust), characteristic chondrule sizes, and other components. Other ways of classifying chondrites include weathering and shock. The L chondrite group is the most common of these.
TYPE
L Chondrite
LOCATION
Western Sahara Desert, Morocco
SIZE
3.85 x 2.5", .17" thick, 77 grams
CATEGORY
SUB CATEGORY
ITEM
#227979